A Space-eecient Fast Prime Number Sieve

نویسندگان

  • Brian Dunten
  • Julie Jones
  • Jonathan Sorenson
چکیده

We present a new algorithm that nds all primes up to n using at most O(n= log log n) arithmetic operations and O(n=(log n log log n)) space. This algorithm is an improvement of a linear prime number sieve due to Pritchard. Our new algorithm matches the running time of the best previous prime number sieve, but uses less space by a factor of (log n). In addition, we present the results of our implementations of most known prime number sieves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trading Time for Space in Prime Number Sieves

A prime number sieve is an algorithm that nds the primes up to a bound n. We present four new prime number sieves. Each of these sieves gives new space complexity bounds for certain ranges of running times. In particular, we give a linear time sieve that uses only O(p n=(log log n) 2) bits of space, an O l (n= log log n) time sieve that uses O(n=((log n) l log log n)) bits of space, where l > 1...

متن کامل

Two Compact Incremental Prime Sieves

A prime sieve is an algorithm that finds the primes up to a bound n. We say that a prime sieve is incremental, if it can quickly determine if n+1 is prime after having found all primes up to n. We say a sieve is compact if it uses roughly √ n space or less. In this paper we present two new results: • We describe the rolling sieve, a practical, incremental prime sieve that takes O(n log logn) ti...

متن کامل

The Number Field Sieve

One of the most important and widely-studied questions in computational number theory is how to efficiently compute the prime factorizations of large integers. Among other applications, fast prime-factorization algorithms would break the widely-used RSA cryptosystem, and be of great interest in complexity theory. In particular, there is no algorithm which can factor an integer n in polynomial t...

متن کامل

Sieve Methods

Preface Sieve methods have had a long and fruitful history. The sieve of Eratosthenes (around 3rd century B.C.) was a device to generate prime numbers. Later Legendre used it in his studies of the prime number counting function π(x). Sieve methods bloomed and became a topic of intense investigation after the pioneering work of Viggo Brun (see [Bru16],[Bru19], [Bru22]). Using his formulation of ...

متن کامل

A Tale of Two Sieves

I t is the best of times for the game of factoring large numbers into their prime factors. In 1970 it was barely possible to factor “hard” 20-digit numbers. In 1980, in the heyday of the Brillhart-Morrison continued fraction factoring algorithm, factoring of 50-digit numbers was becoming commonplace. In 1990 my own quadratic sieve factoring algorithm had doubled the length of the numbers that c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996